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Abstract

A ¢f particle simulation method is developed for solving the Gyrokinetic-Maxwell
system of equations that describes turbulence and anomalous transport in toroidally
confined plasmas. A generalized split-weight scheme is used to overcome the con-
straint on the time step due to fast parallel motion of the electrons. The inaccuracy
problem at high plasma f is solved by using the same marker particle distribution
as is used for Jf to evaluate the Bm;/m.A, term in Ampere’s equation, which is
solved iteratively. The algorithm is implemented in three-dimensional toroidal ge-
ometry using field-line-following coordinates. Also discussed is the implementation
of electron-ion collisional effects which are important when kinetic electron physics
is included. Linear benchmarks in toroidal geometry are presented for moderate g,
that is, 8 < 1, but fm;/m, > 1. Nonlinear simulation results with moderate g are
also presented.
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1 Introduction

Up until recently, gyrokinetic particle simulations of Ion-Temperature-Gradient
driven (ITG) microturbulence and turbulence-induced transport typically as-
sumed the electrons to be adiabatic [1-4]. The difficulty of a fully kinetic treat-
ment of electrons in gyrokinetic particle simulations using the §f-method arises
from the fact that for typical tokamak plasmas, the electrons move a factor of
~ y/m;/m, (m; and m, are the masses of the ion and the electron) faster than
the ions along the magnetic field. This poses a stringent accuracy constraint
on the time step that has the form of a Courant condition, kjvp.At < 1.
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Various techniques have been employed to overcome this constraint on the
time step[5—7]. Among these techniques, the split-weight scheme[7] appears
to be especially promising and a generalized version has been implemented
for toroidal geometry|[8]. Numerical experiments[8] show that for low [ cases
a time step about one third of that used in typical adiabatic electron simu-
lations can be used for robust nonlinear simulations, whereas Jf simulations
without the split-weight scheme are numerically unstable for much smaller
time steps. However, an accuracy problem due to the use of the split-weight
scheme is noticed in the simulation of shear-less slab drift waves, which fa-
vors the use of small ¢, the split-weight parameter representing the fraction
of the total adiabatic electron response proportional to the electrostatic po-
tential[8]. Numerical experiments show that by making a proper choice for ¢,
both accuracy and numerical robustness can be achieved simultaneously.

A more severe problem due to high £, which is previously observed in Jf sim-
ulations by Cummings[5], is again present in the split-weight scheme[8]. The
problem arises from the fact that when the parallel canonical momentum p is
used as a coordinate, as suggested by Hahm et. al. [9], a large current appears
in the Ampere’s law due to the zero-order distribution [for most applications a
Maxwellian distribution in terms of p;, fo(p,)], which needs to be exactly can-
celed by the corresponding part carried by the particles and their weights. Any
inexact cancellation can potentially lead to a severe accuracy problem. While
in slab geometry this difficulty leads to inaccurate results at even moderate
B (Bm;/me > 1), in toroidal simulations it leads to numerical instability. A
similar difficulty is encountered in the so-called continuum method of solving
the Gyrokinetic-Maxwell system of equations[10,11], in which an Eulerian grid
is used for integrating the gyrokinetic equations. It has been suggested earlier
that the resolution of the magnetic skin depth might be necessary to achieve
better accuracy[5,10]. However, this is not the case. In particular, recent re-
search indicates that the problem is completely solvable in the continuum
approach[11] by judiciously evaluating the current in Ampere’s law due to
fo(py) in a way that is consistent with the evaluation of the current carried
by df. Regarding the particle approach, Lee’s recent work suggests that the
problem can be solved with a different split-weight scheme[12], pending nu-
merical results from an implementation of the scheme in three dimensions and
toroidal geometry.

In this paper we present a solution of the high S problem for the Jf particle
method, as well as a technique to improve the accuracy of the split-weight
scheme. Since electron-ion collisions have been shown to be important for
linear physics[13], a Monte-Carlo algorithm for treating the electron-ion col-
lisions when using the Jf-method[14] is also described and implemented. The
high 8 problem is solved along the same lines as that used in the continuum
approaches, i.e., by evaluating the fi.(p,) contribution to the current in a way
that is consistent with the computation of §f. Since in the particle approach,



particle coordinates evolve in time, the matrix resulting from discretizing Am-
pere’s law is dependent on time in a very complicated manner and therefore
requires a special technique to invert. We use a hybrid approach which iterates
on the particle-coordinates-dependent part of the matrix in Ampere’s law, but
a direct method to invert the particle-coordinates-independent part of the ma-
trix using Fourier transforms. The algorithm is implemented for an unshifted
circular flux surface magnetic equilibrium using the field-line-following coor-
dinates|15]. Extensive linear tests have been performed, including simulations
for a shear-less slab geometry, which show good agreement between the code
and the linear dispersion relation, in cases where previous algorithms fail [8],
and toroidal simulations which agree with Eulerian codes [16,17,11] in terms
of both mode frequency and growth rate, for both the finite-3 stabilization of
the ITG mode and the Kinetic Ballooning Mode (KBM).

The paper is organized as follows. In Section II the equations for the Gyrokinetic-
Maxwell system of equations is presented in a form ready for particle simu-
lations. Numerical algorithms are described in Section III, with emphasis on
the cause of the high / problem and the solution. Examples of simulation,
both linear and nonlinear, are presented in Section IV. Concluding remarks
are given in Section V.

2 J4f-method for the Gyrokinetic-Maxwell system of equations
A. Normalization

We consider a toroidal plasma with an on-axis magnetic field strength of B,
ion temperature Tp;, electron temperature 7y, and ion number density ng at the
center of the simulation domain. By is used as unit for measuring magnetic field
strength and ng for number density. We assume ions are single charged. The ion
mass and electron mass are measured in units of the proton mass, m,, and are
denoted by m; and m,. Defining mpvﬁ = Ty and z,, = /myTy/eBy, vy, is used
as the unit for velocity, z, for the unit length, and time is measured in units
of t, = m,/eBy. Finally, we define m;v3; = 1 and mev?, = Toe/Toi = 1/7, so
that electric potential ¢, vector potential A, and electric current are measured
in units of Ty; /e, Ty;/ev, and engv,, respectively.



B. Equations for split-weight scheme

Using the canonical momentum pjo, = vjo + 2 (A;) as a coordinate, the

gyrokinetic equation is written as (o = i, ¢€)
Ofa . 0fa
A, o’ \Y @ aax  — C a)s 1
5 +vg fa + Dy ap, (fa) (1)
where
Pla= 25V (p) — L2b. VB + vju(b-Vb) - vy + 2 vae-V(4,), (2)
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VGa = Vjab + Vaq + Vg is the guiding center velocity. b =b + B Vda =
2, .2
2
Mo (U(; ;;) L/ )B x VB is the drift velocity for low 3 tokamak plasmas with

B < 10: vgp = (E) xb/B. In this paper the electrons are described by the drift-
kinetic equations due to their small gyro radii, so (¢) = ¢, etc., for electrons.
C(fa) is the collision operator. We do not consider collision effects on ions,
C(fi) =0, and use a Lorentzian operator for electrons, C(f.) = Cr(f.), with
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where A = v, /v is the pitch angle parameter. v, is the collision frequency,
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The ions are simulated using the usual §f-method. Define f; = fo; + df; with
foa the Maxwellian distribution in po (£4 = ma (v, +p7,)/2),

with Hee(z) =

Inl¥) = i & ®

d0f; evolves according to
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where &; = p;vai - VB + m; p; pji-

A fraction of the adiabatic part of the electrons perturbed distribution is
treated separately in the split-weight scheme|[8]|. Thus we write
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The distribution A evolves according to
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It is important to keep C(f.) instead of C,(h) in this equation. The collision
operator will be discussed further in Section III.

The electric potential ¢ is given by the gyrokinetic Poisson equation[18],

(6= ) +ero = [f6(R+p—x) dRav— [hav, ©)

where dv = v, dv,dvd€, £ is the gyro angle, and p is the vector leading from
a particle’s gyrocenter to its actual position. ¢ = 0¢/0t is obtained by taking
the time derivative of Eq. 9,

oL 0 foe
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In Eq. 9 q; is defined as

<5=§k: o(k1v3/ %)y ™™ (11)

with ¢ = 3, ¢r exp(ik - x). ¢ and q~$ are similarly defined.

The vector potential A, is given by Ampere’s law,

(]
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Here 3; = ponoToi/ B2 is related to total plasma 8 through 8 = 2(1 + 1/7) ;.
For typical plasma parameters, the (3;/m, term on the left-hand-side leads to
numerical difficulties[8] and this is the main focus of this paper.



C. 6f -method particle simulation

The system of equations Eq. 6 — Eq. 12 are solved using §f particle simulation
methods. Thus we define ion and electron weights, w; and w,, to be propor-
tional to of; and h respectively[1,14]. Particles are typically loaded uniformly
in space and Maxwellian in velocity. Weights evolve according to

dw,- . 5BJ_ 1 1 af()i
IR L e 1)
and
dwe_ 6BJ_ 1 . 1 afoe
o (V)e B + Vi) fOerOe—€efoe 2.
0¢ 1 Ofoe
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The dependence of fy, on x is very weak, pifo% | an% | < 1, and once the gradi-
ents of fy, are evaluated in the above expressions, the dependence of fy, on x
is always dropped, with ng, (x) and vre(x) replaced by 1 and vr,- The collision
operator C}, is implemented as random pitch-angle scattering in the electron
motion equation, as described later. Notice that in the presence of collisions
the exact marker distribution along the (random) particle trajectories cannot
be known[14] and is approximated by fq. in the electron weight equation. The
crucial nonlinear E x B dynamics and the perturbed motion due to magnetic
fluttering, v,0B/By, are included in the guiding center velocity vgq.

3 Algorithm

A Predictor-Corrector scheme is used for evolving particle coordinates and
the weight equations. Gyro-averaging is done with the four-point averaging
procedure[19]. Field solvers and the collision operator are described below.

A. Solving Ampere’s law

The f;/m, term in Ampere’s law, Eq. 12, and the first term on the right hand
side (RHS) of Eq. 10 represent contributions of the electric current carried by

fOe(pH), i.e., . )
lfad = o [ Foevn,p) Ay (0) dv = A (15)
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The corresponding ion term is small compared with the electron term and is
therefore neglected. Due to the large mass ratio 3;/m, is typically much larger
than k2 p?. This term has to be largely canceled by part of [ hv,dv. This can
be easily seen by noticing the fact that in a uniform plasma the Alf¥en mode
frequency is independent of the mass ratio at moderate (3, consequently, the
explicit strong dependence on the mass ratio in Eq. 12 should be canceled out.
However, with discrete particle effects and finite particle shape effects involved
in the evaluation of the g; [ hv,dv term, inexact cancellation occurs. This dif-
ficulty arises because we have chosen fy, in the Jf scheme to be Maxwellian
in terms of the canonical momentum (to eliminate 0A, /0t from the equa-
tions), instead of Maxwellian in terms of v,. The difference between the two,
foe(vy) — foe(p), is represented in particle weights. In particle simulations
the current carried by particles is computed by summing over the product
of individual particle velocity and weight, therefore is explicitly dependent
on particle velocities. Our approach to facilitate the cancellation between the
two currents, that comes from fo, and that comes from foe(v;) — foe(p)), is to
rewrite Jj[foe] in a form that shows explicit velocity dependence and, subse-
quently, to replace fye by its discrete representation. We first rewrite Eq. 15
as

Glfoel =7 [ foelv1p) B} 4y (x) av. (16)

No approximation is made here, however, Eq. 16 allows better cancellation
between the two currents when the velocity integral is replaced by summing
over particles. This can be seen by examining the linear part of foe(v,)— foe(py),

Joe(v)) = foe(py) = =70y A foe (Py), (17)

which is part of the particle weight. The current from this linear part is the
same as that coming from f..(p,) but in the opposite direction,

/(—TpnAufOe(Pn)) v dv = _mieAn- (18)

When computing the perturbed electric current from the particle weights the
integral in this equation is of course replaced by summing over particles. The
point here is that, when the difference between v, and p, in the integrand of
Eq. 18 is neglected, the integrals in Eq. 16 and Eq. 18 have the same velocity
dependence.

We next replace fo in Eq. 16 with its discrete representation (with proper
normalization),

~ Vo1
Joe ~ N oru, ; 6(x —x;) 6(ve — i) 0(vy — vyy), (19)

here V is the volume of the simulation domain and N total number of electrons



used in the simulation. The tilde notation stands for the numerical represen-
tation.

In addition to using the same set of discrete particles, the same scattering
operation as that used for [ hv, dv has to be used to distribute A; at the
particle location to nearby grid points. That is,

el 0) & 17 3ty 4y (x7) S(x — x;). (20)

Here S(x) is the particle shape function used to deposit the particle current
to nearby grid points. A triangular shape is typically used in each dimension.
Thus S(x) = Sip(z/Az)Sip(y/Ay)Sip(2/Az) (Az, Ay and Az are the grid
sizes) with

I— |z | for |z |<1

SlD(.’I)) = (21)
0 for | z |> 1.

The value of A, at the particle location x; in Eq. 20 is calculated from the
values at the neighboring grids using the same shape function,

Aj(x5) = Z Ay (%1,m,0) S (X5 — Xpm,n), (22)

I,m,n

where Xjmna is the location of the grid indexed (I, m,n). When we replace
the B;/m, term in Eq. 12 with ij/[ foe] in Eq. 20, the resulting equation for
Ay, upon discretization, has a matrix that involves particle coordinates. It is
solved iteratively. We rewrite Ampere’s law as

B\ it _ g o L
<_V2L + # A”+1 = ,Bz (5u”i - 5'1,14”9) —+ ﬂl (EA? — (5] [f()e]) y (23)

e e
where 5A1l”i and (%ne result from numerically evaluating the corresponding terms
in Eq. 12. The superscript n stands for current values, and A} is used in

the evaluation of &j[foe] according to Eq. 20. Given the form of the RHS of
Eq. 23, APt is solved using Fourier transforms[8]. Typically, 5 — 7 iterations
are needed to ensure convergence.

Numerical experiments show that for shear-less slab simulations, rewriting of
%[ foe] in the form of Eq. 16 is not necessary. In other words the factor pﬁj /me
in Eq. 20 can be ignored in the shear-less slab limit. This is because in a
shear-less slab geometry particle motion is extremely simple, with Maxwellian
loading in velocity and uniform loading in space the marker density in princi-
ple remains so (at least linearly) in the simulation and dropping the velocity
dependence in Eq. 20 causes no systematic change. The finite particle size
effects in Eq. 20, S(x — x;), leads to a systematic difference between §j] foe



and 0j[ foe] that cannot be eliminated by merely increasing the number of par-
ticles. In toroidal simulations there could be a small but systematic difference
between the marker density and a local Maxwellian distribution due to effects
such as particle drifts, boundary conditions and nonuniform resolution of the
simulation domain due to the use of the field-line-following coordinates, and
we find that rewriting Eq. 15 in the form of Eq. 16 is important.

B. The computation of ¢ andé

The quasi-neutrality condition, Eq. 9, is solved spectrally as described pre-
viously[8]. Eq. 10 is solved with the following modification: Consistent with
replacing | foe] With 0j[ foe] in Ampere’s law, dj[ foe| is also used for evaluating
the first term on the RHS of Eq. 10. The second term on the RHS of Eq. 10 is
evaluated as previously described[8]. The integrals in the third term and the
fourth term are evaluated by depositing particle’s weighted velocity, w;vge;, to
the grid points. Only the unperturbed guiding center velocity vgg is used here.
In general only linear terms on the RHS of Eq. 10 and Eq. 12 are retained.

The last term in Eq. 10 represents the rate of change of charge density due
to E x B convection of fy,. Due to finite ion Larmor radius effects it is not
negligible. In our previous implementation of the split-weight scheme this term
was evaluated using a Fourier representation for ¢, with gyro-averaging and
the integration over fo, performed analytically[8]. We have found that this
is again inconsistent with the discrete particles used to evaluate the charge
density in Eq. 9 and the four-point scheme for gyro-averaging. It is easy to
see that numerically this term comes from the vg - V fy, terms in the weight
equations, Eq. 13 and Eq. 14. More specifically, we evaluate this part of the
rate of change of the charge density due to fo,, %‘I‘fo, according to

9pq

4
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e am\" T
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here four equally-spaced points along the ion gyro-orbits, indexed by [, are
chosen, and p; is the vector leading from the gyrocenter x; to the point /.
Consistent with the gyro-averaging in particle pushing, vg for ions in Eq. 24
is also evaluated using a four-point averaging not explicitly written in Eq. 24.



C. The Lorentz operator

Using Eq. 7 we have

a.f Oe

Cufe) = Culfoe(py)) = Culegd "

) + Cr(h). (25)
The €, term is nonlinear and will be neglected. The first term is given by,

CL(fOe(pll)) = —TV A foe, (26)

which is implemented as an additional term in the electron weight equation.
The third term on the RHS of Eq. 25 is implemented using the Monte-Carlo
method. After both the predictor and the corrector step, a random change to
the pitch angle variable A is carried out, with the average amount of change
determined by collision frequency and the time step[20,14],

Anew = /\old(l — z/e(St) + [(1 _ )\gld) Vedt] 1/2

, (27)
where + means equal probability of + or —[20]. 6t = At for corrector step
and 0t = 2/t for predictor step, At is the time step of the simulation.

4 Simulations
A. Field-line-following coordinates

In this paper we assume a magnetic equilibrium with circular concentric
flux surfaces. The magnetic field strength is B(r,0) = 1 — (r/Ry) cosf. The
field-line-following coordinates[15] (z,y,2) are defined by z = r — 1o, y =
(ro/q0)(g0 — ¢) and z = qoRyf. Here (r,0,() are the usual toroidal coordi-
nates, Ry is the major radius at the magnetic axis, 7y is the minor radius at
the center of the simulation domain, gy = ¢(ro) the safety factor. One can
think of (z,y) as labeling the field line and z as a coordinate along the field
line. The particle motion is given by

o : 9(p) ,  O(A)

. Ma 2 2 _ I

=" BR: (v +v1/2)sinf o + 9 9

- mey 2 2 . a<¢> _ a("4II>

Y wBFRs (v, +v7/2)(s0sin 6 + cos ) + 5z U o,

f=y . (28)
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Here R = Ry+7cosf, s = 10q'/qo. The terms dependent on ¢ or A, in & and ¥
represent nonlinear dynamics due to the E x B drift and magnetic fluttering.
p; in Eq. 2 is found to be

@ r sin _Q_aQOR06<¢>

4 T maqR} me qR 0z
_,_51_0; <ia§£”> i .821;1") +28§;;1”>)
+BLR0 (U”% + %%) sin 0
+BLRO <v”%j> Z—i%ﬁ) (cos @ + sfsinB) (29)

in which the first term on the RHS is the mirror force and is the only term
needed for linear simulations. The nonlinear terms account for effects such as
trapping and de-trapping of particles due to fluctuations. In this paper we
have neglected this parallel nonlinearity.

The simulation domain (0, ;) x (0,1,) x (0,1,) is chosen to be I, = 2mgyRy,
to cover the whole 6 range. [, is typically chosen such that the simulation
domain represents a fraction of the full torus, but in principle can be chosen
to be 27ry/qo, to cover all toroidal angles. Periodic boundary conditions are
used in z and y, and toroidal boundary conditions[15] are used in z. The
boundary condition in z is somewhat arbitrary, as there is no natural way to
connect the two radial boundaries based on physical periodicity.

B. Alfvén and ITG in a shear-less slab

Consider a plasma slab with constant equilibrium magnetic field B = Bjz.
Density and temperature are nonuniform in the z direction. Here we compare
the results of linear simulations with the linear dispersion relation discussed in
Ref. [8]. The emphasis is to compare simulation results from the new algorithm
as presented in Section IIT with results from the previous algorithm in Ref. [8].
Fig. 1 shows results plotting the Alfvén wave frequency vs. ;. The plasma is
uniform in this case. Results from both the new scheme (triangles) and the old
scheme (squares) are shown. The mode wave number is k,p; = 0.2, kyp; = 0.4
and kyp; = 7.14 x 10~*. We choose m; = 1 hence p; = m;vr; = 1. The box
size is given by l, = l, = 32p;, |, = 8796p;, number of grids in each dimension
is N, = Ny = N, = 32. The split-weight parameter ¢, = 0.5, electron mass
me = 1/1837, ve; = 0. The time step is Qi At = 1, and the number of particles
is 1048 576 per species. The results from the previous scheme show significant
deviation from the dispersion relation for 5; > 0.5%, whereas the results from
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the new scheme show very good agreement. Fig. 2 shows similar results for
the I'TG mode growth rate. The plasma is nonuniform with

1 dn()a 1 dTOi
TL:_——:OO4’ i = —
: Noq dx T T()i dx

1 dTpe
TOe dx N

= 0.2, KTe =

Other parameters are the same as that used in Alfvén wave simulations except
that particle number is now 262 144 per species. Results from both the new
(triangles) and old (squares) schemes are shown. The new scheme gives accu-
rate results for all §; values shown, while the old scheme gives less accurate
results for low §; (8;/m. < 1) and wrong results for larger ;.

C. Toroidal linear benchmark with Eulerian codes

Consider a toroidal deuterium plasma (m; = 2) with the Waltz standard case
parameter set [21]: Ry/a = 3.0, ro/a = 0.5, Rokri = Rokre = 9.0, Rok, = 3.0,
so =r0q'/go = 1.0 and gy = 2.0. Here we compare results of mode growth rate
and frequency from the particle code with that from Eulerian codes gks[16]
and GYRO[11]. Fig. 3 and Fig. 4 plot the computed data for mode growth
rate and frequency as functions of 3;. The mode wave number is kyp; = 0.3.
The size of the simulation box is [, = 4.71, I, = 29.6 and [, = 2mqo Ry with
Ry = 1000.0. The grid numbers are 8 x 32 x 32. Time step At = 4. A total
of 32 768 particles are loaded for each species. The split-weight parameter
€g = 0.5. Results from the particle code are converged with respect to ¢, and
l, assuming [, is not too big. Results for both the finite-5 modified ITG branch
and the Kinetic Ballooning Mode (KBM) are shown. Given the considerable
difference between the two types of codes in methodology, we consider the
agreement as reasonable.

C. Collisional effects

Fig. 5 shows the effects of collisions on the linear growth rate of the k,p; =
0.3 mode at f3; = 0, using previous parameters. Also shown are results from
gks and GYRO. To avoid numerical difficulty at small energy &., where the
collision rate v, becomes singular, a cut-off velocity v, = 0.05vr, is chosen such
that electrons with v < v, are not subject to collisions. Growth rates from the
particle code at low collision rate is lower than that from the Eulerian codes,
possibly caused by different resolution of the velocity space. We have verified
that changing the cut-off velocity to v, = 0.1vye in the particle code causes
little change in the results.
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D. Nonlinear simulations

We use the Cyclone DIII-D Base Case[22] parameters to test the algorithm
nonlinearly. These are typical H-mode plasma parameters as follows: R/Lt; =
6.9, R/Lte =0, R/L, =22, qo = 1.4, s =0.78, o/R = 0.18, m; = 1, m, =
1/1837. In the following simulations a collision frequency of ve/wq = 3 x 1074
is used. The size of the simulation box is [ x 1, x _z = 65.3p; x64p; x8796p;, grid
numbers are 64 x 64. Time step is w At = 3. A total of 1 048 576 particles is
loaded per species. Fig. 5 shows the evolution of the ion heat flux x; from three
runs, with 8; = 107*, 2 x 107 and with adiabatic electrons (dn. = 7(¢ — (¢))
with (¢) being the average ¢ on a flux surface). The estimated steady state
diffusivity for the adiabatic electron run is approximately x;L,/p?vr; &~ 2.3, in
agreement with other gyrokinetic particle codes[22]. The inclusion of kinetic
electrons (both trapped and passing) at §; = 10~ increases the maximum
growth rate from yL, /ur; = 0.11 to vL, /vri = 0.16 and increases x; roughly
in proportion. Increasing beta to 3; = 0.002 (corresponding to total plasma
beta of 8 = 0.8%) reduces the maximum growth rate to yL,/vr; = 0.07
and the steady state diffusivity to x;L,/ pfvTi ~ 0.7, well below the adiabatic
electron level. Much larger ion heat fluxes are observed as f3; is increased to
above the KBM threshold. The experimentally measured ion heat diffusivity
for the DIII-D shot (shot #81499 at time t=4000ms, for which the base case
parameters are based on) is x;L,/p?vri &= 0.16 [22], much lower than the
adiabatic electron level. Although a direct simulation of the experiment is
not attempted here, as we do not yet have effects such as profile variation,
realistic geometry, impurities, etc., in the model, the simulation results indicate
that electromagnetic effects on the I'TG turbulence play an important role in
determining the transport level.

5 Conclusion

In this paper we have developed an algorithm for the simulation of microin-
stabilities on the space scale of the ion Larmor radius with kinetic electrons
and electromagnetic perturbations, keeping 0 B, and neglecting 0 B)|. Keeping
only perpendicular magnetic field perturbations is valid for low beta plasmas.
The key elements of the algorithm comprise of: 1) an adjustable split-weight
scheme that allows for an increase in the time step to a practically acceptable
level in nonlinear simulations of multiple modes; and 2) an algorithm for solv-
ing Ampere’s equation for moderate 3, f;m;/m, > 1, in which the current
carried by the zero-order distribution is evaluated using the marker particle
population in such a way as to ensure accurate cancellation with the corre-
sponding current carried in Jf. The algorithm was thoroughly tested linearly
in shear-less slab geometry where analytical dispersion relation is available.
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Linear comparisons with the gks and GYRO toroidal continuum codes are
also good. Finally, nonlinear simulations in toroidal geometry show that the
ion energy flux decreases as (3 is increased, but with § still below the kinetic
ballooning limit. Above the kinetic ballooning threshold, the simulations show
energy fluxes that are ten or more times higher than corresponding electro-
static simulations.
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Fifure Captions

Fig. 1 Alfvén wave frequency vs. ;. Solid line is from the dispersion relation.
Data points shown in squares are from the old algorithm [8], points in triangles
are from the new algorithm.

Fig. 2 Growth rate of the ITG mode vs. §;.

Fig. 3 Growth rate of the k,p; = 0.3 mode vs. j3; for the Waltz standard case.
Solid line is from GYRO, dashed line from gks, points from the particle code.

Fig. 4 Frequency of the kyp; = 0.3 mode vs. 3; for the Waltz standard case.

Fig. 5 Growth rate the k,p; = 0.3 mode vs. v,i for the Waltz standard case.

Fig. 6 Evolution of the ion heat diffusivity in time.

16



0.06F
o‘o5§
L0.04F
a
3 0'035 *
o.oz§
0.01F

0.0 0.2 0.4 0.6 0.8 1.0 1.2
B, (%)

Fig. 1.

17



0.0020 f

_0.0015F}
3’ ;
X 0.0010}

0.0005 F

0.0000t ‘ ‘ ‘ ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0 1.2
B, (%)

Fig. 2.

18



0.0 0.1 02 03 04 05
B, (%)

Fig. 3.

19



a/ v *w

-0.0F ]
—0.2F .
—0.4} RN *
-0.6F :
—0.8F .
-1.0F o 1
_1 .2: 1 1 1 ///K 1 :
0.0 0.1 02 03 04 05
g. (%)

Fig. 4.

20



Fig. 5.
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